Spectral Unmixing for the Classification of Hyperspectral Images
نویسنده
چکیده
Spectral mixing is inherent in any finite-resolution digital imagery of a heterogeneous surface, so that mixed pixels are inevitably created when multispectral images are scanned. Solving the spectral mixture problem is, therefore, involved in image classification, referring to the techniques of spectral unmixing. The invention of imaging spectrometers especially promotes the potential of applying spectral unmixing for sub-pixel classification. This paper investigates two spectral unmixing techniques: the least squares (LS) unmixing and the matched filter (MF) unmixing. Experiments with a set of AVIRIS data were carried out to evaluate the performance of spectral unmixing. The MF unmixing method proved itself to be an effective technique in classifying a hyperspectral image by showing a 90% classification accuracy. Whereas, the LS unmixing technique did not show promising results, when it was applied to the original bands of the test image. The maximum noise fraction (MNF) transformation, however, is found to be helpful to promote the performance of the LS unmixing. Applying the LS unmixing to the MNF transformed images can improve the classification accuracy for about 20%.
منابع مشابه
تجزیه ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه ی طیفی هرس شده
Spectral unmixing of hyperspectral images is one of the most important research fields in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملAnalysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کامل